

MESH ANIMATION TO GAME EVENT BINDING (.MADSTATE FILES)1
Naming of .madState Functions ..1
Example: ..2
Available functions:..3
Inclusive and exclusive states ..6

Mesh Animation to Game Event Binding (.madState files)
This document describes the format and usage of .madState files, which provide a system for
binding mesh animations (stored in .mad files) to in-game events. .madState files are lua scripts
which contain a number of functions that are run whenever certain in-game events happen. For
example, you could use this system to bind an animation to the launch event of a ship. These
functions are called while the game is running and for each time a particular event is called.
Therefore, they should be kept quite simple. Generally, they are meant to trigger animations in
ship-specific ways.

These functions are called from a SobWithMesh’s MadState class. The MadState class is an
encapsulation of an arbitrary number of boolean state variables. When the state of one of these
variables changes, it calls a function in the .madState file, if it exists.

Mesh animations are deterministic in playback. Therefore, it is permissible to make the MadState
dependent upon mesh animations and the game simulation dependent upon the MadState. This
is one way to enable mesh animation to fit in with procedural animation. For example, we can
require a ship to deploy its weapons (a mesh animation) before training them on targets
(procedural animation).

Naming of .madState Functions

Functions in the .madState file are named as such:

<ShipName>_<State>_On<Event>

where:

ShipName is the name of the ship. Ex: VGR_HEAVYMISSILEFRIGATE.

State is the state variable. Ex: Launching. Following is a table events.

State name Usage

Normal Called when a ship is created.

Open Called when a ship is in its open or “deployed” state.

Closed Called when ships are no longer open or “deployed”.

CodeRed Called when a ship tries to fire its weapons.

CodeGreen Called when a ship is finished firing its weapons (there’s a delay
before this is called)

ResourceStart The ship is about to start resourcing, this is called when it starts to
get in position.

ResourceDo The ship is in latch position and harvesting.

Luke Moloney HW2_MadState 11/21/2003 3:54 PM

Homeworld 2
Copyright © 2003 Relic Entertainment

Page 2

ResourceEnd The ship has launched from the resource and is about to head
back.

RepairStart The ship is about to get in position to repair something.

RepairDo The ship is in position and is starting to repair.

RepairEnd The ship has finished repairs.

DockPathOpen The animation linked dock path (set in the hod file) has been
booked. The docking / launching ship will wait for this state to be
set.

DockPathClosed The animation linked dock path is now free.

Launched The ship is fully launched.

Docked The ship is on the final approach for docking.

DefenseFieldActivate The defense field is trying to activate, the game logic will not start
until this state is set.

DefenseFieldDeActivate The defense field is no longer active.

CloakFieldActivate Cloaking is trying to activate.

CloakFieldDeactivate Cloaking has stopped.

HyperspaceGateActivate Hyperspace gate is in position and trying to link with its pair.

HyperspaceGateDeActivate Hyperspace gate has delinked.

DoingFlightManeuver The ship is performing some kind of flight maneuver.

CaptureActive The ship has started to capture the target.

CaptureInActive The ship is not capturing anything.

NIS00 Called by the NIS.

NIS01 Called by the NIS.

NIS02 Called by the NIS.

Event is one of the following:

Event Usage

OnSet Called when the specific state is set by the game code.

OnPause Called when the animation associated with the state pauses.

OnEnd Called when the animation associated with the state ends.

Example:

Here’s an simplified example .madState script:

VGR_HEAVYMISSILEFRIGATE_CodeRed_OnSet = function(ship)
 setState(ship, "CodeRed", 0)
 startAnim(ship, "Open")
 startEffect(ship, "Open")
 setPauseTime(ship, "Open", 1000)
end

VGR_HEAVYMISSILEFRIGATE_CodeRed_OnPause = function(ship)
 setState(ship, "CodeRed", 1)
end

Luke Moloney HW2_MadState 11/21/2003 3:54 PM

Homeworld 2
Copyright © 2003 Relic Entertainment

Page 3

VGR_HEAVYMISSILEFRIGATE_CodeGreen_OnSet = function(ship)
 startAnim(ship, "Close")
 startEffect(ship, "Close")
 setTime(ship,"Close",0)
 setPauseTime(ship, "Close", 1000)
end

Obviously, this script is for the Vaygr Heavy Missile Frigate. This defines animations for going
“Code Red” and “Code Green”. When going “Code Red”, the animation for opening the missile
bay doors is triggered, and told to pause at its end (1000 is used, it’s just a big number). By
default the system which calls our script also sets the state variable so we need to unset it as we
only want weapons to be active when the animation has finished. In the OnPause function we
actually set the state. When going “Code Green”, the animation for closing the missile bay doors
is triggered and CodeGreen is set for us by the calling code.

Available functions:

From within these event functions, you can call any allowable Lua functions. However, we
defined the following animation and state-specific functions:

setState(ship, stateName, state)

Sets the specified state within the ship’s MADState class. Will not trigger a call to the
corresponding _OnSet Lua function. This is useful for making the setting of a state dependent
upon an animation completing, or reaching a pause point.

ship Sob* Passed from game

stateName string Name of state. See state name table above.

state bool (0/1) Is state on or off

Returns nothing

getState(ship, stateName)

Queries the specified state within the ship’s MADState class.

ship Sob* Passed from game

stateName string Name of state. See state name table above.

Returns bool (0/1) Is state on or off

startAnim(ship, animName)

Starts a mesh animation. Will not re-start an animation if already running. An assert will be
generated if animation not found.

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

Returns nothing

startParamAnim(ship, animName, param)

Starts a parameterized mesh animation. A parameterized animation is an animation where the
time is specified by a parameter which ranges from 0..1. Will not re-start an animation if already
running. An assert will be generated if animation not found.

Luke Moloney HW2_MadState 11/21/2003 3:54 PM

Homeworld 2
Copyright © 2003 Relic Entertainment

Page 4

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

param string Name of parameter. “HorizontalRotation” and
“VerticalRotation” are built-in animations that determine the
rotation based on the ship’s rotational thrust, similar to how
the engine glow is parameterized.

Returns nothing

stopAnim(ship, animName)

Stops a mesh animation. Animation need not be running.

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

Returns nothing

pauseAnim(ship, animName)

Pauses a mesh animation. Animation need not be running.

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

Returns nothing

unpauseAnim(ship, animName)

Unpauses a mesh animation. Animation need not be running or paused.

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

Returns nothing

setPauseTime(ship, animName, time)

Specifies when the indicated animation will pause.

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

time float Time (seconds) in animation when animation will pause.
Pass a very large number to pause at the end.

Returns nothing

getPauseTime(ship, animName)

Queries the time when the specified animation will pause.

ship Sob* Passed from game

Luke Moloney HW2_MadState 11/21/2003 3:54 PM

Homeworld 2
Copyright © 2003 Relic Entertainment

Page 5

animName string Name of mesh animation from .mad file.

Returns float Time (seconds) in animation when animation will pause. A
very large number means it will not pause.

setTime(ship, animName, time)

Sets the current time in an animation (FF or Rew)

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

time float Time (seconds) in animation to jump to. Will be clamped to
animation bounds.

Returns nothing

getTime(ship, animName)

Queries the current time within the animation.

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

Returns float Time (seconds) in animation to jump to.

setLoopCount(ship, animName, nLoops)

Sets the number of times the animation will loop. 0 by default.

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

nLoops int Number of times the animation will loop

Returns nothing

getLoopCount(ship, animName)

Queries the number of times the animation will loop. Current loop is included.

ship Sob* Passed from game

animName string Name of mesh animation from .mad file.

Returns int Number of times animation will loop. Will be 0 for
animations with no looping.

startEffect(ship, eventName)

Starts playing an effect event as defined in the ship’s .events file.

ship Sob* Passed from game

effectName string Name of the effect to play.

Returns Effect
handle

Handle to started effect.

Luke Moloney HW2_MadState 11/21/2003 3:54 PM

Homeworld 2
Copyright © 2003 Relic Entertainment

Page 6

Inclusive and exclusive states

Some states can be inclusive and exclusive. This makes it easier to apply a certain animation
state behavior to all ships. In Scripts/MeshAnimation.lua, there are two tables named inclusive
and exclusive which list inclusive and exclusive pairs of states. When the first of an inclusive pair
is set, the second is also set. When the first of an exclusive pair is set, the second is cleared.

These rules are applied similar to how states are applied by the .madState scripts: they do not
call the lua functions and therefore cannot trigger animations.

